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SUMMARY 3336 {

The lowest axisymmetric body modes of vibrations of the ring stiffened Apollo type
vehicle are studied by means of a Rayleigh-Ritz procedure. A method is developed for
converting the ring stiffened structure into an equivalent orthotropic, truncated, conical

shell.

A simplified theory in the manner of Love's first approximation in the classical thin shell
theory is used. Results are given in the form of dimensionless frequency parameters for
various values of length to mean radius ratio, thickness to mean ratio, and the ratios of -
elastic constants of the equivalent orthotropic shell. It is found that stiffening the
circumferential rings has the same effect on the natural frequency of vibration of the
conical shell structure as that of increasing its thickness whereas increasing the cross
stiffness has very little effect on the natural frequency. Results for the equivalent
isotropic shell are determined as a special case of the equivalent orthotropic shell and

are found to be in good agreement with those predicted by Love.

In an appendix, a method is developed to estimate the vibration frequencies of the
panels between shell stiffeners by assuming them to be equivalent to simply supported
orthotropic rectangular plates with no curvature.

The results of these analyses provide a basic working tool for investigations of coupled
vibration modes of the Apollo structure in the intermediate and critical frequency
range between low frequency launch vehicle modes and high frequency, high~density

modes of the primary and secondary structure.
//
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INTRODUCTION

The analysis of environmental vibration of a complex space vehicle such as the Apollo
will involve consideration of three broad frequency regions:

a) Low frequencies involving bending and longitudinal modes of the entire
launch vehicle where individual sections, such as the payload, tend to
vibrate very nearly as rigid bodies.

b) Intermediate frequencies involving low order coupled modes of the local
basic airframe.

c) High frequencies involving high order modes of the airframe and secondary
structure which are grouped so closely that statistical analysis is generally
required for analysis of vibration levels.

It is the infermediate frequency range which presents one of the more difficult problems
in defining vibration environments and it is to this frequency range that this report is
directed.

A method is developed for general application to the Apollo to define the lowest
axisymmetric modes of the basic airframe.These modes constitute the lower * -:nd
for this intermediate range of coupled modes and are generally responsible ior major
dynomic loads on secondary structure and major equipment packages. This report
represents a significant step forward in dynamic analysis of the vibration character-
istics of a complex vehicle such as the Apollo. Although the analysis is bosed on
vibration of the basic airframe, without loading by equipment, it is considered a
necessary preliminary step for developing a full understanding of the vibration loads
developed in the flight system.

The structural frame work of the Apol'o scace vehicle consists essentially of a truncated
cone-shaped surface built up of prrels reinforced with rigid stiffness in the longitudinal
and circumferential directions. A detailed analysis of the vibration characteristics of

the vehicle should take into consideration the exact focation and spacing of the stiffeners
and the mass distribution of the entire structure and its pay load. However, to estimate
the fundamental frequencies of the body modes of vibration of the structure, it should be
sufficient to assume it to be equivalent to an orthotropic truncated conical shell with
difficult elastic properties in the meridianal and tangential directions. The thickness~to-
radius ratio is assumed to be small so that the elastic properties in the radial direction do
not enter into the study.

Vi brctionzchuracterisﬁcs of isotrgpic conical shells have beejx studied by Federhofer] ‘,
Goldberg™, Hermman and Mirsky , and Garnet and Kempner . [n this report the lowest
frequency of axisymmetric free vibrations of a simply supported truncated orthotropic skell
is studied by means of a Rayliegh-Ritz procedure.

® Superscripts indicate references at the end of this report.
1




A method is also developed in Appendix A for estimating the lowest modes of the individual
panels between stiffeners which make up the conical shell .

The results of these analyses are given in the form of non-dimensional frequency para-
meters which depend on material properties and structural geometry. Specific resonant
frequencies can then be determined for a wide range of structural materials and structural
designs which include the £pollo configuration. ‘




2.0

THEORY

Figure 1 shows a conical shell and the coordinate system used. As shown, a is the
projected semi-cone angle, X, and x,, define the edges of the truncated cone, R is
the mean radius of the cone, L is thezlength measured along the longitudinal axis,

and r _and r o ore the radii of the end surfaces of the core. It can be shown that

1

x
.:i_= 2x (xz—l)cotc m
1+_2_ !
X1
and
._:TI = —;ﬁ. (1+x") sina (2)

It is assumed that the cone is simply supported at the edges x = Xyr X =Xoe For small
deflections, Hooke's law for an orthotropic elastic body gives

o = FE e +E"

x X X ‘o
og = EB €g + E €, (3)
%0 = 26 "x 0

The median fiber strains are given by

e = J2u
X d x
(4)
v w
s T x ' E,
where the radius of curvature R2 is related to x by
R2 = x tan a (5
so that
v w
69 T x * x tan a ()




The displacements U and W in the meridianal and normal directions are

_ dw
U= u-z 0 x
(7)
W = w
when v = u{x,tyand w =

w (x,t) are the displacements of the median surface

Following Herrman and Mirsky ~, the strains corresponding to these displacements are

2

g w
€. = €
1 X aZX

(8)

in the meridianal direction and

_ .z ow
o x 0

(9)
x -~
in the tangential direction,

Shear effects are not taken into consideration in this analysis.

The stress resultant in the x direction is

+h/2 ,
N =/ o <1+———>dz
X X R

(10)
2
- h/2

and that in the tangential direction is

+h/2
N =

6 oedz

(an
-h/2

The moment resultant in the x-direction is



+h/2 ,
M =f o z (1 +——> dz
X X R,)

-h/2
and that in the tangential direction is

+h/2

MGZ_/ O'BZdZ

-h/2

Substituting from (3) to (9) the stress and moment resultants (10) to (13) become

No= E'h 2¥ . gk (Ji-+ u )
X X d x x x tan a
_ 1 U w 5t du
NB_ Exh(.x_+ xtona) B h g x
M = -F ﬁ 62'“' E"—t‘i 1l ow
X x 12 2 12 x dx
0 x

Mo E 1 aw e b 2w
e x 12 x 0x 1 a)(2

The strain energy in the conical shell is given by

X, o
1 2 0 62
= gy - \ A T M
v 2// Nx 9 x v NG (x+xtona) Mx 2
. 0 d x
1
1 o w .
- Me—x- ax>x sina d 8dx

and the kinetic energy is

=—')-§-ff ['22- llz—-]xsinadedx
Xy

where p h/g is the mass per unit area of the shell.

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19



Following Shulman, o change of coordinates

x =%y e’ (20)

is used to reduce computational work. To use the Rayleigh-Ritz method the displacements
are assumed to be of the form

Ty

u = A]cos 75 cos pt
(21)
w o= C1sin-“y_;. cos p t ,
where Yo = Ine :—f-
Then displacements satisfy the boundary conditions
w =20 at X T Xy % (22)

Substituting (21) into (19) the kinetic energy becomes

" Xy 2w
T =_12-£—g_pl/[ (u2+w‘{)xsina sinzpt df dx (23)
1% 4
1

Its maximum occurs when the shell is in its middle position, i.e., when sinpt -1

2 9

qux = %_ ngh f[ (u2+w2) x sina db dx (24)

X‘ 0

The potential energy attains its maximum when the shell is in its extreme position, i.e.,
when cos pt = 1. Since it is a conservative system, the maximum potential energy is
equal to the maximum kinetic energy. From (24) and (18) using (21) with cos pt = 1,

v/
cos wt = 1

2
p = oh (25)
2 / (u2+w2)x sina dB dx
/ .




This expression for the frequency is minimized with respect to the constants A, and C
which gives the following two equations for the determination of the frequencies

1

2 xo 2n
%[V/ ——P—Z;Lh— f (u2+w2)xsinad9dx]=0 (26)
1 cospt =1 %
2n
2 X2
3%' V/ - P2phff (02+w2)xsina dex]= 0 (27)
g cospt=1 9
Xq 0

After substitution and considerable simplification, equation (26) gives

2 E! ' 2
[} e 1 ] |2 X' "]
A] (é—) |nx +—E—|— Inx-—)\{—z-(x —])+—-—2——————Tz
x g (+g)
E" i_ 1 ' ~
+ C] -T:(Z)tona |nx]— 0 (28)
where
- 27
Y2
xz‘ '
= x
*
and

2 2
A o= P PXy
gk

is the frequency parameter. Similarly, equation (27) gives




3.0

. 2 2 1
+ C] EE_)._ " ; + _]_(_h) (.E.> (] -._I-.><2+ (—i—)2 >}
E' tan" a 24 \ x 2 x2
x
1 OE. RV 1 ‘ 2+ (.%.)2
L5 )
24 Elx x x' N

" 2 2 V2 7
%'E';(L]) ) (":.2)'x i E?,(xl:}) -0

For a nontrivial solution, the determinant of the coefficientsof A, and C, in equations
{28) and (29) should be zero. This gives a quadratic in A for the determination of the
frequencies p. This quadratic has been solved with the Wyle CDC 3209 computer for
various values of the ratios

X Ele EII

’ EI ’ El r’ ond G’

L
‘R

X
1 x x

and the results are tabulated in Tables 1 - 4.

RESULTS

It is seen that the effect on frequency of increasing the stiffness of the circumferential
rings is the same as that of increasing the thickness of the shell all other dimensions and
elastic properties remaining the same. Thus, the frequency parameter A\ is approximately

95 percent higher afE'e/E'x = 5 than that at E'JE'X = 0.2.

Variations in the cross stiffness parameter E"/E'x have very little effect on the vibration
frequency.

As shown in Table 4 by the special case of an isotropic truncated conical shell, the results
obtained by the one term approximation of the present theory are within 1 percent of those




predicted by Love> and are within 3 percent of those predicted by Garnet and Kempner4.

For engineering applications, therefore, the results of this report are accurate enough to
be incorporated into any test or design specifications.

To opply the results obtained in this report to a ring stiffened shell vehicle such as the
Apollo it is necessary to devise a method of converting a ring stiffened shell to an equiv-
alent orthotropic shell. Such methods have been used by Bodner =~ for stability problems
and by Hopprm:nn7 for vibration problems. Bodner's method is the simpler one and involves
the main assumptions that the ring stiffness has very little effect on the axial extensional,
bending rigidity, and shear rigidity of the isotropic shell.

According to this theory, the ratios of the elastic constants E'JE 'x and E"/E'x of an

equivalent orthotropic shell in terms of the various dimensions of a reinforced shell are
given by, (see Figure 2),

£ 12(1- )1 £
— = ® and — = - v (30)
E 3 E
x L h x
3
where v = Poisson’s ratio of the material of the longitudinal stiffener.

L = Spacing between longitudinal stiffeners.
h = Thickness of the shell between the stiffeners.

Ih 2 ?
2 $ h
$ IO * As (Zs "% ;o 1 - V2 Y Zc: @n

1

= Stiffener moment of inertia about its own centroid.

!

0
As = Area of cross section of the stiffener.
z_ = Distance of the centroid of thestiffener fromthe middle surface of the shell.
z_ = Distance of the overall centroid of the ring shell combination from the middle
surface.
6

For details of Bodner's method, the reader is referred to the cited references.
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TABLE 1

Values of the Frequency Parameter \ for Fundamental Axisymmetric
Mode of Orthotropic, Truncated, Conical Shells

EY/E = -0.2
e
0.2 | 06 | 1.0| 1.5 | 2 4 5
h L

a TR T A
5° 0.05 | 0.25 | 679.33 | 73046 |781.58 |845.49 |909.39 1165 1292
5° 0.05 | 0.375 | 148.92 |199.46 {250.00 |313.17 |376.34 | 629.0 | 755
5° 0.05 | 0.50 | 60.25|110.21 [160.16 |222.60 |285.05 | 334.79 | 659.65
10° 0.15 | 0.30 | 672.10 |684.36 [696.63 |711.96 |727.29 | 788.62 | 319.28
10° 0.15 | 0.50 | 88.21| 99.99 |111.76 [126.48 [141.20 | 200.07 | 229.50
10° 0.15 | 1.0 9.05| 19.74 | 30.42| 43.76| 57.09 | 110.20 | 136.78
15° 0.20 | 0.375 || 195.26 | 200.36 | 205.46 | 211.84 | 218.22 | 243.74 | 256.5
15° 0.20 | 1.0 4.93| 9.a3] 13.32| 18.5| 23.79 | 44.69 | 55.09
20° 0.10 | 0.375 | 24.99| 27.64| 30.28 | 33.58| 36.88 | 50.09 | 56.70
20° 0.10 | 0.50 | 8.26| 107 | 13.28| 16.41| 19.55 | 32.09 | 38.36
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TABLE 2

Values of the Frequency Parameter A for Fundamental Axisymmetric
Mode of Orthotropic, Truncated, Conical Shells

E"/E; = 0.3
/£,
0.2 0.6 1.0 | 1.5 2 4 5
h L
a T T A
5° 0.05 0.25 || 672.74 |723.85 | 774.95 |838.83 | 902.71 |[1158  |1285
5° 0.05 0.375 || 142.5 | 193.0 | 243.51 [306.63 | 369.76 | 622.24| 748.47
5° 0.05 0.50 53.94 | 103.83 |153.7 |[216.08 | 278.44 | 527.81| 652.47
10° 0.15 0.30 || 670.27 | 682.53 | 694.78 | 710.10 | 725.42 | 786.70 | 817.34
10° 0.15 0.50 86.65| 98.41]110.17 [ 124.86 | 139.56 | 198.33 | 227.71
10° 0.15 1.0 7.69] 18.21 | 28.93 | 42.19 | 55.43 | 108.1 | 134.17
15° 0.20 0.375 || 194.5 [199.60 | 204.72 |211.1 | 217.47 | 242.9 | 255.7
15° 0.20 1.0 4.39| 8.571 12.74 | 17.94 | 23.14 | 43.84| 54.09
20° 0.10  0.375 || 24.67| 27.31| 39.95| 33.25 | 36.55 | 49.75| 36.35
20° 0.10 ' 0.5 7.94 10.45] 12.96 | 16.10 | 19.22 | 31.75| 38.01
| .

14




TABLE 3

Values of the Frequency Parameter A for Fundamental Axisymmetric
Mode of Orthotropic, Truncated, Conical Shells

E"/E; = -0.4
0.2 0.6 1.0 1.5 2 4 5
h L

a T T A
5° 0.05 0.25 || 663.51 {714.59 | 765.67 | 829.52 | 893.37(1148  [1276
5° 0.05 0.375 || 133.54|183.99| 234.44 | 297.50 | 360.55| 612.76 | 738.84
5° 0.05 0.50 45.14 | 94.94| 144.74|206.98 | 269.21| 518.07 | 642.45
10° 0.15 0.30 667.68 |679.92 | 692.17 | 707.48 | 722.78 | 784.00 | 814.61
10° 0.15 0.50 844.62 |961.98 | 107.93 1 122.59 | 137.26 | 195.90 | 225.21
10° 0.15 1.0 5.79| 16.35| 26.88| 40.02 | 53.14| 105.13| 130.69
15° 0.20 0.375 || 193.48 | 198.57| 203.66 | 210.03 | 216.39| 241.83 | 254.56
15° 0.20 1.0 3.65| 7.79| 11.93| 17.09 | 22.24| 42.68| 52.73
20° 0.10 0.375 || 24.20 | 26.84| 29.48 | 32.78 | 36.07| 49.26| 55.85
20° 0.10 0.50 7.50| 10.06 | 12.51| 15.63 18.76 | 31.27| 37.52
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TABLE 4

Comparison of Fundamental Frequency Parameter \ Predicted for
Isotropic Conical Shell by Present Theory and by Classical Theory
(Love Formulation)

E;/’E; = 1.0
E"/’E; - -0.3 \
_h L Present Classical

R R Theory Theory
5° 0.05 0.25 774.95 770.63
5° 0.05 0.375 243.5] 242.73
5° 0.05 0.50 153.7 153.51
10° 0.15 0.30 694.78 693.8
10° 0.15 0.50 110.17 110.02
10° 0.15 1.00 28.93 28.73
15° 0.20 0.375 204.72 203.63
15° 0.20 1.00 12.74 11.53
20° 0.10 0.375 29.95 29.70
20° 0.10 0.50 “ 12.96 12.82
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APPENDIX A

A METHOD FOR ESTIMATING THE FREQUENCIES AND MODE SHAPES

OF SIMPLY SUPPORTED ORTHOTROPIC PLATES

The vibration characteristics of the individual panel sections which form the shell of
the Apollo vehicle may be estimated, for a first approximation, by accounting for
non-uniform bending stiffness in the two directions on the panel but neglecting the
curvature of the panel. This method also neglects any coupling between panels in-
duced by torsional motion of the stiffeners. The latter effegf has been shown by Lin
to cause coupled panel modes to group in frequency bands.” However, the lower
frequency of the n, band, for pinned supports, coincides with the n,, resonant mode
for a single span. lfhus, analysis of a single panel provides a recsonakt’ﬂe estimate

of the lower bound for individual panel modes. The major reason for presenting this
analysis, however, is to focus attention on an analysis method suitable for orthotropic
plates representative of Apollo skin structure.

17




NOMENCLATURE |
a, b sides of the rectangular plate
h plate thickness

E',E', E", G elastic constants of the orthotropic material
x

3
E' h
D = _)'ILZ_— bending stiffness in the x-direction
x
E' B
Dy = —QL bending stiffness in the y-direction
3 3
e
H = E]2 h + Géh rigidity in torsion of the orthotropic plate
p weight density of the plate
v Poisson's ratio
w deflection of plate
p frequency of vibration
X g characteristic functions of the vibrating beam problem
€, € tensile strain in x and y direction
x 4
hear strain
Vyy shear
o, o tensile stress in x and y direction
x y
xy shear stress

The stressdisplacement relationships for an orthotropic plate are

62w ) 82W
e = -z [(E 2 + E 5
x * ax oy
2 2
o = -Z El a 2VV+ E” a ;V> (])
4 y dy 0 x
2
_ a w
Txy = -2Gz X0y



The stress—strain relationships are

c = E' ¢ + E' ¢

x X X y

c =E' e + E'" € (2)
M Y Y X

Ty T C Yy

The strain energy in the plate is

@ be Cc € o 04 T
v:// <x2x + Y2Y + ._xZ_i_XL) dx dy dz (3)
0“0

For simply supported orthotropic plates the deflection defined by

a
0 85 o o2 ®

m=1 n=1

satisfies the boundary conditions at both edges.

Substituting (4) into (3) and making use of (1) and (2) the strain energy in the plate
can be written as

= = 1r4cb 2{ m4 _E_lL n4
v =ZZ 5 D %, (T)+E' (Tf)

X

R ACICREIGRCR

Choosing Pnp O the generalized coordinates, the kinetic energy in the plate can be

written as
R I :

(5)

19




Using Lagrange's equations

d 07T ) oV
ey . - - O (7)
dt ( aq;mn Bcpmn
¢, are found to satisfy the equation
4 E' 4
ph .. 4 {/m r (2)
—g—¢mn+“ qu>mn\<:l)+ Ex(-b—
(8)
v 2 E° 1212+4G m\: ny2) . 0
B \a b B (T (b)
x x
a solution of which is
On C] cospt + C2 sinpt (9)
where
D 4 E' 4
2 9 Py m n
= —rL (=
TR A [ AT
g (10)
E" m' 2 n 2 G /m 2 n 2 1/2
* 2?(“;) (T) +4F(T) (T)
_ x x

From (4) and (10) all the frequencies and modes of vibrations of a simply supported
orthotropic plate can be determined.

For an isotropic (or uniform) plate, -EE— =y ,%— =_17-v_, Ex = Ey = —ﬁ—z ,
EhS
and’ Dx = —— = D and equation (10) reduces to the usual expression for modes
12(1-v7)

of a simply supported plate.

A [ @]
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